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By Sidney M. Harmon and Isabella Jeffreys
May 1950

~ Some of the equations in the appendix (pages 15 to 24) of this paper
are incorrect for the cases in which values of the parameter k . are
negative, which corresponds to the condition that the wing trailing edge
is swept forward. If derivatives for these negative values of k are
desired, the design charts of figures 7 and 8, which are correctly
plotted for both positive and negative values of k, should be used
exclusively.

Neither of the authors of this paper is now employed by NASA, and .

the original derivations are not available. Apparently some sign errors A

were inadvertently introduced by simplifications made to the egquations
after the design charts were plotted. Specifically, certain changes in
sign were introduced as a result of the extraction of negative roots
from radical terms. Corrections to specific equations for application
to wings with sweptforward trailing edges (that is, for negative values
of k) are obtainable, however, by comparison with a reintegration of
the formulas for potentials and pressures in tables I and II to detect
possible errors in sign.

NASA - Langley Fleld, Va. ‘ Issued T-T-61
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THEORETICAL LIFT AND DAMPING IN ROLL OF THIN WINGS WITH

ARBITRARY SWEEP AND TAPER AT SUPERSONIC SPEEDS

SUPERSONIC LEADING AND TRAILING EDGES

By Sidney M. Harmon and Isabella Jeffreys
SUMMARY

Generalized expressions are obtained by means of the linearized
theory for the surface velocity potentials and the surface-pressure
distributions due to 1ift and roll, the lift-curve slope, and the
damping-in-roll derivative for a series of thin wings. The results are
applicable to*wings of arbitrary taper ratio in which the leading edge
is sweptback, whereas the trailing edge is elther sweptback or swept-
forward (including zero sweep angles), and the tips are unyawed with
respect to the free-stream direction. The range of speeds covered is
such that the components of the stream velocity normal to the leading
and trailing edges are supersonic. "A further restriction is that the
foremost Mach line from either tip may not intersect the remote half-
wing. The configurations for which the results for the stability deriv-
atives are applicable may be extended by means of the reversibility
theorem. These additional configurations include cases in which the

. Toremost Mach line from either tip intersects the remote half-wing, pro-

vided the Mach line from the leading edge of the center section inter-
sects the trailing edge, and also wings which have sweptforward leading
edges. '

The results of the investigation are presented in the form of
generalized design curves for rapid estimation of the derivatives.,

INTRODUCTION

The 1ift and damping in roll as obtained from the linearized
theory of supersonic flow have been reported for various ranges of
supersonic speeds for thin wings having particular plan forms (for
example, see references 1 to 7). In reference 7, generalized curves are
presented for the lift-curve slope CL@ and the damping-in-roll CZP
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for a particular family of tapered .sweptback wings for a range of
supersonic speeds for which the wing lies within the Mach cone emanating
from the leading edge of the center section but lies ahead of the Mach
cone emanating from any point along the trailing edge (subsonic leading
edge and supersonic trailing edge).

In the present paper, the range of speeds which is considered in
reference 7 is extended and date are obtained for cases in which a por-
tion of the wing always lies ahead of the Mach cone emanating from any
point along the leading edge (supersonic leading edge) although the
trailing edge is still supersonic. The wings considered have an arbi-
trary taper ratio, leading and trailing edges that are each swept at a
constant angle (including zero sweep angles), and tips that are unyawed
with respect to the free-stream direction. The results of the analysis
for wings with sweptback leading edges and either sweptback or swept-
forward trailing edges are given in the form of generalized equations
for the surface velocity potential and for the surface-pressure distri-
bution for the wing at an angle of attack and in a steady rolling
motion. Generalized equations are also given for these wings for the
derivatives CLa and Czp. A series of generalized curves is presented,

from which rapid estimations of CLOL and CZP can be made for given

values of aspect ratio, taper ratio, Mach number, and leading-edge sweep.
Some illustrative variations of the derivatives with these parameters
are also given.

As shown in references 8 and 9, the theorem of reversibility
applies to the derivatives CL@ and CZP for the wings considered in

this paper (see also reference 10 for CLG)- Consequently, the results

for these derivatives, which are presented for wings with sweptback
leading edges, apply as well to the corresponding sweptforward wings
obtained by reversing the flight dlrection. In order to present a
complete and systematic analysis, some data pertaining to the present
calculations which have been given in other papers have been incor-
porated herein. '

SYMBOLS
X,¥,2 v rectangular coordinates with origin at leading edge of

center section (figs. 1 and 3(a))

Xg:Yg indicates a transformation of ofigin of x- and y-axes from
leading edge of center section to leading edge of tip

section (xa =X - E; ya =y - h on right half-wing)




undisturbed flight velocity

free-gtream Mach number

wing angle of attack

angular velocity about x-axis, radians

1
Mach angle (sin'l M or cot™L B)

sweep of wing leading edge, positive'for sweepback

sweep of wing trailing edge, positive for sweepback

wilng ‘semispan

wing span

chord at arbitrary spanwise position
root chord

tip chord

taper ratio (ct/cr)

bep(l + A)
wing area —

2b
aspect ti
spect ratio (Cr T >

i BA(L + A)
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J=A'(1 + 1))

free-stream mass density of air

disturbance-velocity potential on upper surface of airfoil

pressure difference between lower and upper surfaces of
airfoil, positive in direction of 1ift

nondimensional coefficient expressing ratio of pressure
difference between lower and upper surfaces of airfoil

fe

to free-stream dynamic pressure
2

contribution of wing cut-off at tip to ACp; used with
subscripts o and p to refer to angle of attack and
steady rolling motion, respectively

forces parallel to x-, y-, and z-axes, respectively

1ift | - -

rolling moment

1ift coefficient < L )
1 2
> VS

1
rolling-moment coefficient i——ég——
5 pV~Sb
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Subscripts:
R refers to reverse of a given wing; obtained by reversing
flow direction
TE refers to trailing edge
ANALYSIS
Scope

. The analysis is limited to wings of vanishingly small thickness
that have zero camber. The results are valid '‘only for a range of super-
sonic speeds in which the components of the free-stream velocity normal
to the leading and trailing edges are supersonic. These conditions are
now commonly expressed by the term "supersonic leading and trailing
edges". The wing configurations considered in the analysis are defined

. by the information and sketches given in figures 1 and 2. All the data
obtained in the analysis for the velocity potential and pressure distri-
butions and for the derivatives CL, and Czp are applicable to the

wings of the type shown in figure 1. These wings have sweptback leading
edges, although the trailing edges may be either sweptback or swept-
forward. A further restriction is that the Mach waves from either tip
may not intersect the remote half-wing. ' )

It is indicated subsequently that, although the data for the veloc-
ity potential and pressure distributions are applicable only to wings of
the type shown in figure 1, the results for CL, and CZP may be

applied also to an additional series of wing configurations by use of
the theorem of reversibility. This additional series of wings is indi-
cated in figure 2. The wings in the figure have supersonic leading and
trailing edges. In figure 2(a), the leading edge 1s sweptforward. The
configuration shown in figure 2(b) represents an increase in the range
of applicability for BA over that indicated in figure 1. This increase
in the BA range, by means of the theorem of reversibility, is discussed
in the section entitled "Results and Discussion" and corresponds to the
allowance that the Mach waves from a tip may intersect the remote half-
wing, provided the Mach line from the leading edge of the center section
intersects the trailing edge of the wing.

The orientation of the wing with respect to a body system of coordi-
nate axes used in the analysis is indicated in figure 3(a). The surface
velocity potentials, the pressure distributions, and the stability deriv-
atives are derived with respect to this system. Figure 3(b) shows the
wing oriented with respect to the stability-axes system. A transforma-
tion of the body system of axes to the stability system of axes
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(references 11 and 5) indicates thaf to the first order in a, the
derivatives CL and Czp have the same value in the stability system

as they do in the body-axes system shown in figure 3(a).

Method

Basic considerations.- The evaluation of the derivatives Clq, and
Cy involves the integration over the wing of the disturbance pressures
caused by an angle of attack o and a steady rolling angular veldcity' D,
respectively. In the treatment of small disturbances, such as are con-
sidered in this analysis, the disturbance pressures may be determined
from the well-known relationship

po o LB _ 2V by o (1)

p 1 2 L2V
5 pV 5 oV
Derivation of ¢ and ACy distributions.- The potential func-

tion @ must be determined so as to satisfy the linearized partial d4if-
ferential equation of the flow and the boundary conditions that are
associated with the wing in its prescribed motion.

The methods for deriving the pressure distribution for lifting
swept wings of finite aspect ratio of the type considered herein are
extensively treated in the 1iterature (for example, references 1, 2, 4,
and 12 to 15). In the present analysis, it was found convenient to
. obtain the surface-potential function and the pressure distribution on
" the Zing by means of the method and data presented in references 14, 15,
or 10. :

Expressions for ¢- and ACp distributions.- For purposes of
obtaining generalized expressions for the surface velocity potential and
pressure distributions, a general wing of the type considered in this
analysis is conveniently divided into five individual regions. These
regions are indicated in figure 4 and are defined by means of Mach fore-
cone boundaries which yield regions in which all points are influenced
by a particular type of disturbance. Thus all points in region 1 are
influenced by a disturbance which is identical to that induced by an:
infinitely long oblique wing. Points in region 2 are influenced by a
disturbance which is identical to that induced by a triangular wing.
Points in region 3 experience two types of disturbances; one of these 1s
the same type as that in region 1 and the other results from the effect
of the wing cut-off at the tip which is hereinafter denoted as the tip
effect. Points in region y experience disturbances which include all
types associated with reglons 1, 2, and 3. Consequently, the formula
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for ¢ or ACp in region 4 expresses the effects of all the disturb-
ances experienced in regions 1, 2, and 3. When the g or ACp  expres-
sion as determined for region 4 is used for any of the regions 1, 2,

or 3, certain terms become imaginary. These imaginary terms indicate
the condition that a disturbance type associated with region 4 vanishes
in the other regions 1, 2, or 3. The foregoing facts show that the
expression for @ or ACp  in any of the regions 1, 2, 3, or b is

found simply as the real part of ¢ or ACp as determined for region L,
Points in region 5 are actually influenced by all the disturbances which
affect region 4, together with a new disturbance which arises from the
tip effect associated with region 2. However, if the effective forezone
of influence is drawn for points in region 5, that 1s, if the external
field is canceled by the appropriate area on the wing surface, the
effect of the adjacent half-wing disturbance is seen to be completely

. canceled by the tip effect arising from region 1. The real part of the
expression for @ or ACp, as determined for region 5, consequently
does not yield the corresponding formulas for the other regions.

The formulas for ¢ and ACp for the five regions for a general
wing of the type considered in this analysis are summarized in tables I
and II for the cases of angle of attack and rolling, respectively. It
is significant to note in table II that in regions 1 to 4 the pressure
distributions caused by an angle of attack are conical (f(v) or f(Vg))
and those caused by steady rolling are quasi-conical (xf(v) or =xgf(Va)).
Examples of the pressure distributlion in the chordwise and spanwise
directions for the cases of angle of attack and rolling are given in
figures 5 and 6, respectively.

Derivation of formulas for Cr, and Czp.- The derivatives CLa'
and Czp are basically obtained by integrating over the wing the quan- -

tities ACp(x,y) and ACp(x,y) times its moment arm, respectively.
Thus

l .
CLy, = S_a/fs ACp dx dy | | (2)

. .
Clp = S5 po/27 gv.fj; ACpy dx dy , (3)

N :
where ACp = 7 @x end @x for the angle of attack and rolling cases

are linear functions of o and p, respectively.
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The conical form of ACp for Cp, (f(v) or f(Vg)) and the
quasi-conical form of ACp for Czp (xf(v) or xgf(Va)), as indi-

cated in table II for regions 1 to 4, make it convenient to employ a
polar integration procedure. In this polar integration procedure, the
variable of integration y or Yy, <1s replaced by the variable ¥

or ¥,, respectively, and the integrations in equations (2) and (3) are
conveniently performed first with respect to x and then with respect
to v or v,. In some cases in the present analysis, it was found
convenient to utilize the potential function ¢ to obtain the deriva-

tives Cry and Czp. Thus, for a lifting wing, the linearized, thin-
airfoil theory yields a potential function ¢ which is antisymmetrical
with respect to the xy-plane (z = 0). Furthermore, ¢ is continuous

for 2z = Constant (either z—>+0 or z —> -0). Consequently, ¢ is
zero at the wing leading edge. Then, because ¢x is continuous on the

wing, there results

T.E. , [ T.E. |
f‘ ACPd.x=Vf By dx = = g (L)
L L.E.

<&

E.

The total 1ift per unit span along any wing section, consequently,
is proportional to the value of the potential at the trailing edge.
Similarly, the rolling moment contributed by any wing section is pro-
portional to the product of the potential at the trailing edge and its

moment arm. Thus the derivatives are .
o == | g ay - (5) .
Lg = VSa IE :
TR .
and

- . , o
Cip = 5 pb72Vj; ey &y (6)
R

where the integrals are evaluated along the wing trailing edge. TFor
cases in which the derivatives were expressed in the form of equa-
tions (5) or (6), the potential @y  was obtained from table I by

specifying x and y or X, and Yy, for conditions along the wing

trailing edge.
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RESULTS AND DISCUSSION

Formulas for Cr, and: CZP

The formulas for CLOL and Czp are summarized in the appéndix.

It may be found from an examination of table II that the pressure dis-
tributions are in general markedly different for the cases where the
Mach line from the leading edge of the center section intersects the
wing tip and where this Mach line intersects the wing trailing edge.
In order to determine the derilvatives Cr, and Czp, however, it is

sufficient to integrate the forces or moments on the wing as determlned
for the case in which the Mach line intersects the wing tip. The real
parts of the resulting expressions then also yield the corresponding
derivatives Cr, and Czp for the case in which the Mach line inter-

sects the wing trailing edge. This fact results from the inherent rule
of supersonic flows that any disturbance cannot propagate ahead of the
Mach aftercone. Then the first case (Mach line cutting tip) may be
converted to the second case (Mach line cutting trailing edge) by cut-
ting of f an appropriate rear portion of the wing. This conversion does
not alter in any way the original pressure distribution over the new
wing. Thus, if the expressions for CL, and CZP as determined for

the first case are now applied to the second case, certain terms which
arise from disturbances peculiar to the first case become imaginary, -
‘and the remaining terms that are real yield the corresponding expres-
sions for Cr, and Clp for the second case.

Charts for BCr, and BCZP

The results of computations for the derivatives CL@ and Czp

are presented in figures T and 8, respectively. The data are shown for
values of taper ratio A from O to 1.0 for values of aspect-ratio
parameter BA from 2 to 20. The range of sweep angles covers values
for sweep-angle parameter B cot A from 1 to .

For constant B, that is, constant M, the curves in figures 7
and 8 indicate dlrectly the variation of CLQ and Czp, respectively,

with sweep for constant values of A and A. In this case the curves
for increasing values of B cot A correspond to decreasing angles of
sweepback for both the leading and trailing edges. Some specific varia-
tions of the derivatives Cr, and Czp with Mach number, aspect ratio,

sweep angle, and taper ratio are shown in figures 9 and 10. The wing
parameters represented in the figures include configurations with
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supersonic and subsonic leading edges and supersonic trailing edges.

The results for the supersonic leading edges were obtained from fig- , .
ures 7 and 8 of this paper and those for the subsonic leading edges

were obtained from reférence 7. (Note that application of the

reversibility theorem to the results of reference 7 for wings with

subsonic leading edges and supersonic trailing edges will yield

corresponding results for wings with supersonic leading edges and

subsonic trailing edges.)

The data in these figures show that the manner in which Cly,
and Czp vary with many of the factors depends to an important extent

on the value of the aspect-ratio parameter BA. Figures 7 and 8 show,
for constant Mach number, that when BA is less than approximately 3,
the magnitudes of Cr, and Czp tend to increase with decreasing

sweep angle; however, when BA 1is greater than approximately 3, the
magnitudes of these derivatives tend to increase with increasing sweep
angle., This general trend for values of BA greater than approximately 3
becomes more pronounced as BA 1s increased. These data indicate alsq
that for values of B cot A greater than approximately 3, the sweep of
the leading and trailing edges for constant BA and XA have a very
small effect on BCry or BCzp.

The foregoing trends may be explained by -the relation of the Mach
"aftercone which emanates from the leading edge of the center section to
the wing tip. This relationship has an important effect on the contri- .
bution of the wing tip region to the derivatives CL, and Czp. If

the quantity

CAB(1 + A)
AB(1 + A) - I

B cot A<

then the Mach line from the leading edge of the center section cuts the
wing tip. This condition yields region 5 in figure 4. If the effective
forezone of influence is drawn for points in region 5, that is, if the
external field is canceled by the appropriate area on the wing surface,
it is seen that the pressure distributions in this region for both angle
of attack and rolling are determined only by the sources in a strip
along the leading edge of the remote half-wing. Because these. sources
generally are at a comparatively large distance from region 5, the con-
tribution of region 5 to Cr, is comparatively small (see fig. 5). In

the case of rolling, these sources at the leading edge of the remote
half-wing actually contribute negative damping to region 5 because these
sources have the reverse sign from those on the adjacent half-wing

(see fig. 6). For a given value of B cot A, from geometric considera-
tions, this influence of region 5 in reduding the magnitudes of Clg, .

and Czp decreases as the value of BA increases.
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Similarly, from geometric considerations, the influence of regioch 5
in reducing the magnitudes of Cr, end Czp increases as the value of

the taper ratio A increases. This factor contributes to an imporﬁant
extent to the trend that the maximum values of Cr, and Czp occur at

progressively lower values of A as BA decreases (see figs. 9 and 10).

Extensions of CLa and CZP Results by

Reversibility Theorem

Increased range for BA.- The direct application of the formulas
in the appendix is limited by the restrictions that the leading edge 1is
sweptback and is supersonic, that the trailing edge is supersonic, and
that the foremost Mach line from either tip does not intersect the
remote half-wing. As noted in the introduction, however, the reversi-
bility theorem for CLg and Cilp 1is applicable for all the plan forms
used in the derivation of these formulas. In this connection, wing
plan forms of the type shown in figure 2(b) require special attention.
In these cases, the foremost Mach line from either tip intersects the
remote half-wing, that is,

< 4B cot A
BASTT AT + B cot &)

" therefore these conditions are outside the validity of the formulas in
the appendix. It can be shown, however, that if this reduced-aspect-
" ratio parameter is accompanied by the condition that the foremost Mach

line from the center section intersects the trailing edge, that is

> bAB cot A
BA 2
ST+ MN(B ot A1)

the reverse of the wings shown in figure 2(b) will meet all the condi-
tions for the valldity of the formulas in the appendix. Thus the
values for Cr, and Czp for wings of the type shown in figure 2(b)

can be calculated from the formulas in the appendix by using the wing
parameters for the reverse of the given wing, and applying the calcu-
lated result to the given wing. If the subscript R refers to the
reverse of the given wing, the parameters to be used in the formulas
are related in the following manner:

AR = A
Bmp = -Bmk
kR = (7)
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Wings with sweptforward leading edges.- The results for BCL,
and BCZP which are shown in figures T and 8 for wings in which the

leading edges are swept back (positive values for B cot A) can be
applied to wings with sweptforward leading edges (negative values

for B cot A) by use of the reversibility theorem. (See fig. 2 for
applicable wing configurations.) Thus, suppose the sweep-angle parame-
ter is expressed as B cot A where this quantity is negative and where
the reverse of the given wing meets all the conditions for the validity
of the data in figures 7 and 8 as indicated in figure 1; the values

for BCLa and BCZP for the given wing are then obtained from figures T

and 8, respectively, by choosing a wing for which the relationships
expressed by equation (7) apply. Thus

N B2A cot A(L + A)
B cot fp = 55 cot AL - %) - BA(L + %)

BAR = BA
and
AR = A

where the subscript R refers to the parameters to be used in figures 7
and 8.

An illustrative comparison of BCLOL and BCZP for wings with

sweptback and sweptforward leading edges is given in figures 11 and 12,
respectively. The data in these figures are presented for a taper ratio
of 0.5, for values of BA of 2, 4, and 10, and for a range of B cot A
from -5 to 5. The wing parameters represented in the figures include
configurations with supersonic and subsonic leading and trailing edges.

The results for the sweptback leading edges were obtained from
figures 7 and 8 of this paper for the supersonic leading and trailing
edges and from reference 7 for the subsonic leading edges and subsonic
and supersonic trailing edges. In the case of the subsonic tralling
edges, the results from reference 7 have a limited significance in that
they represent an upper limit for the true values of the derivatives.
The limited signifance of the results for the subsonic trailing edges is
indicated in figures 11 and 12 by means of the dashed portions of the
curves.

The results for the‘'sweptforward wings were obtained by use of the
reversibility theorem. In this connection, it should be noted that the
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reversibility theorem for Cr, and Czp is applicable even for
subsonic leading and trailing edges (reference 9).

_ The comparison for the wings with sweptback and sweptforward
leading edges in figures 11 and 12 indicates that the curves for BCL,

and BCzP for A = 0.5 are, in general, very nearly symmetrical with .

respect to the ordinate axis. The significance of the symmetry of the
curves is better visualized when it is noted that, for a specified A,

A, and A, 1f the sweep angle of the leading edge 1s reversed in sign

to -A, there is also an alteration in the sweep angle of the trailing
edge, the magnitude of which 1s dependent on the various wing parameters.
Consequently, the near symmetry of the BCr, and BCZp curves in fig-

ures 11 and 12 for A = 0.5 indicates that for a given A and A,
if A 1is reversed in sign, the values for the derivatives Cr =

and Czp are, in general; only slightly changed even though the 5weep

angles of the trailing edges of the two wings may be markedly different.
For the case of an untapered wing, the theorem of reversibility indi-
cates that CLa and CZP are unchanged by reversing the signs of A

and ATE’ that 1s, the corresponding curves in figures 11 and 12 would

be identically symmetrical with respect to the axis of ordinates for
all wvalues of BA.

CONCLUDING REMARKS

‘ Generalized expressions have been obtained by means of the lin-

earized tueory for the surface velocity potentials and the surface-
pressure distributions due to lift and roll, the lift-curve slope, and
the damping-in-roll derivative for a series of thin wings. The results
are applicable to wings of arbitrary taper ratio in which the leading
edge is sweptback, whereas the trailing edge is either sweptback or
sweptforward (including zero sweep angles), and ‘the tips are unyawed
with respect to the free-stream direction. The range of speeds covered
was such that the components of the stream velocity normal to the
leading and trailing edges were supersonic. A further restriction is
that the foremost Mach line from either tip may not intersect the
remote half-wing. '

The configurations for which the results for the stability deriva-
tives are applicable may be extended by means of the reversibility
theorem. These additional configurations include cases in which the
foremost Mech line from either tip intersects the remote half-wing,
provided the Mach line from the leading edge of the center section
intersects the trailing edge, and also wings which have sweptforward
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leading edges. The results of the investigation were presented in the
form of generalized design curves for rapid estimation of the
derivatives. ' )

A significant result of the investigation was that for constant

Mach number when ALVNF -1 (where A is aspect ratio and M is Mach
number) was less than approximately 3, the magnitudes of the lift-curve
slope (1, and the damping-in-roll derivative Czp tended to increase

with decreasing sweep angles; however, when A\JM2 - 1 was greater than
approximately 3, the magnitudes of these derivatives tended to increase

with increasing sweep angle.

Langley Aeronautical Laboratory
‘National Advisory Committee for Aeronautics
Langley Air Force Base, Va., February 23, 1950
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APPENDIX

SUMMARY OF FORMULAS FOR CL@ AND CZP

The following formulas for CL, and Czp refer to wings which

have an arbitrary taper ratio, leading and trailing edges that are each
swept at a constant angle (including zero sweep angles), and tips that
are unyawed with respect to the free-stream direction. These configura-
tions are limited by the conditions (see fig. 1)

BcotA 21

>
lB cot.ATE' 21

and

Note that the trailing edges may be either sweptforward or sweptback.
In the formulas, care must be used to preserve the correct sign of the
terms involving radicals. For example, if a <0 and b <0, then

(& =22 Je o] = ] [P]

It may be of interest to mention that in computing with the formulas,
it was found that if:seven significant figures were used, reliable
results were obtained.

Formulas for CL@

If the Mach line is coincident with the leading edge, that is,
B cot A =1, there result:
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For tapered wings:

' -
2A kyk - 1 2X -1) - cos™t ;] -

OL_"Bl(l- (k+l\|k+ k
MWA(k - 1) . k-1 . '

(1 - @ - Mk +1) k(1 - 22k + 1)

[2x - A(k + 1)) ol 26+ M1 - 3K) (A1)
o\2(1 - )2(x + L)Vk(k + 1) 2k - Mk + 1)

For untapered wings; A = 1; km' = 1:
- [ D L Y -UHE S S - B R~ ‘
CLy = nA'B[: 5 cos” Al + \A" - 3+ 3 ANAY (a2)

When the Mach line is behind the leading edge, that is,
WAm'

y? there result:

1+ A)(m' -1

B cot A >1, and if A' <y

For tapered wings:

or, = Ewk+A'(k-1ﬂ|:
ﬂB\,m'z -1 241 (x2

km'2 -1 (COS,-l' 1 _ cos -1 Lkm! (A‘,- 1)'- A'(k + Q) -
\I(Tﬂn' + l)(kml - l) km' Lym' + A (k - l)

E‘m'k.'A'(k,' 1ﬂ2 m' 4+ 1 oe-l M (L-4") +A(3k+1)
AT (k - 1) \k(km' + 1) - Mun' ~A'(k - 1)
12 A ’ v ' - 1)
bm'k + A'(L + 3k) T o1 lhkm(A 1) + A'(k
- ZA'(yi+1) ) \k I1][;1:1',+ Ty ©°° Tkm' + A' (3K + 1)
| (3)
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For unswept leading edges or for unswept trailing edges; k = = or 0:

CL., = bA'_j2 cos‘1<l'- E) - i] - 22 cos™1 h-2v-J
Lo = 7B(T - 1)) 2/ 721 U - ML - AT] 2%
(2 - X)e -1 J - 2) (A4)

\[EE + M1 - )] T e

For untapered wings:

|2 12_ '2
CL, = . - = (m 2)cos’ln%--——-———-m +

o8 m'2 -1
nA'B\,m'e 1] ¢ ) \fm'g -1
1 2(mt _ v A (m' -
. m'“(m 2) + Atmt | cos 1 I A'(m 1) .
2(mn' - 1 v n'

(s AVNETT gwa o1y, PR - e - 1)

A' +m'
Eqm' + 1 2\m' - 1

(A5)

Lm!

° If A' > T+ M@ - l):

For tapered wings:

1 [k + a'(x - 1T

a2 -1 2A' (k% - 1)

U |
]
H
‘.—‘

km'z -1 -1 -1 nE&km' —A'(k-lﬂe‘ mn' + 1
i Y oD D =] Tk - 1) \k(em + 1)
| L )

(46)

+
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For unswept leading edges or for unswept trailing edges; k =» or O:

' %
‘Lo, = B(T - M) )T~ (A7)
Vi[: M1 - )]
For untapered wings; A=k =1 ' )
b m‘z(m‘e - 2) 11 m'? :

CLy = ——— I cos T & - o +

:rBA'Vm'2 -1 (m'® - 1) m' -1

n'%(m' - 2) . ol x (A8)

2(m' - 1)

Formulas for Czp

If the Mach line is coincident with the leading edge, that is,
B cot A =1, there result:

For tapered wings:

[§J3k3(1 - x)3 + 27%%3(1 - x)2(9k - 85]
+
p | (1 - k)3

[:Jk3(l S k)(15K2 - 32k + 12) + 12k*(k2 + uij

+
(1 -x)3
W a3(1 - kx)(23k° + 10k + 2) + thQ(ule - 5k -‘{ﬂ
35
' : J(1 - k) + bk
1 -12k23 (29K - 1) + 240k3 | ( T(1 1 i)
35 ' 332(1 + k)3

(continued on next page)
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. 8k (k2 + ) [: B! 1 I - X) 4 2%]
COS - = -
213 [ k ok
(1 - ¥¥PRe -1
8k3(13k2 + 2) [j 16 :} . 512 < X )3/2 )
3(1 _ k2)3 3‘JIB(1 + )\,) 3].(3\"2_ J(l + )") k+1
(Jx>3/2
on(41x3 + 63k2 + 11k - 11) - Jk(13k® + 29k - 4)| —————— -
{t: ( e ) - S B :] 4Bk(k + 1)2
J2(3k2 + 3k + 20) + 4OM(k2 - 21k - 2) + 4A2k(23k + 3) «
‘ Eu(k + 1)2 |
[ 1({ X)VEZ 1(; X)Q ad-a, \3/255/2
"2 MYz tEat Y 8T Taaw o
22 [ k 5/2.3/2 &jé(__&__)g 7/2
5(?Tﬂ*.J te\EeT) MOV (49)

For unswept leading edges or' for unswept trailing edges; k =« or O:

; S L (1333 + 65632 - 3427 + 5h0)| [ =T _
lp T 3B(L + 1) 10552 J

L it { e

2
3J° + qu + 92\ J 1 J - 2n
[ | ][ - 8(2 ) cos '_——J+2>;|+

12 5 7

(A10)
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For untapered wings; A = k = 1:

o, 16| 8 (a4 1)2(13a'2 - 22a' +13) 1A' -1,
- Vlp T a3l 315 768 AT+ 1
3 2 | |
S(37a13 At 123a' 37
\]—A_(2688 1920 ' 5760 ~ 2688 | , (A1)
When the Mach line is behind the leading edge, that is, B cot A>1,
. : 1
and if A' < i there result:

@+ m -1)’

For tapered wings:

c 1 —]_28m'1'"k3 Ekz - ‘m‘2(3k2 + 1ﬂ co“'s-l 1,
ln = R . s
PTBB0 e n@? - 132 - f)3 m

108m ' M3(1 + K2 - 2m'2k2)
3033(1 + M) (1 - ¥9)2(@'? - 1) (@2 - 1)

28O b + P02 4 3)] |
3233(1 + M1 - ¥2)3(m'2k2 - 1)3/2

cos~l 2m'k - J(m'k - l{] - {Jh(l - k)”[éhk*m'5 + 1263n ¥k + 5) +

1
km"

2m'k
n3k2(-17K2 + 22k + 43) + m'2k(-5k3 - UBK® + 3k + 2) -
n' (103 + 45K2 + 12k + 5) - (5k° + 1lhk + 55] +

16km' J3(1 - k)3[§m'5k” s 83mtx + 2) + m3KR(-3K2 + 1k +5) +

n'2k(-363 - 8 + k - 6) - m'(6K3 + Tk + 8k + 3) -
(3k2 + 2k + 3}] + 32m'2K2J2 (1 - k)3[;;2k3m'” - oxPm3(3 + k) + .

(continued on next page)
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- 3mrPr(k® - Tk - 6) + 3m'(2K? - 5k - 1) - 3(1 - kﬂ +
256m'3k3J(1 - k 2[2111'3(1 k) +mPk(2 -k - K2) 4

S mr(-2K° +k + 1) 4 (1 -k__‘+256k hl_km'5+hml‘k37 - k) +
k2m'3(-9k2 - 10k + 35) + km'2(3k3 - 32k2 - 5k + 18) +
m'(6k3 - 37k° . bk s 3) + (3k° - 1hk + |

o1 J(1 + kX - 2km') + L4kxm?
J(1 - k) + Lxm'

3 ; -
)} 96n33(1 + M)k(1 - x)3(w'® - 1)(m'k + 1)3\k(m'k + 1)(m' - 1)

{J“(l + k)”lieukl*m'5 + 126304 (5 - k) + m'3KR(-172 - 22k + U3) +
1 2(5K3 - U8K2 - 3k + 2) + m' (10K - 452 + 12k - 5) +

(5k° - 1hk + 5] + 16km'J3(1 + 'k)3l—_ékhm'5 + 83m (2 - k) +
km'3(-3k° - 1hk + 5) + km'2(3k3 - 8k® - k - 6) + m'(6k3 - "(kl2 +
8k - 3) + (3k° - 2k + 3Z| + 32K°m eI (1 + 1:)'3[-1.21:3111'4 -
9km'3(3 - k) + 3m'2(k% + Tk - 6) + 3m'(2k° + 5k - 1) +

3(1 + k)e:l + 256k3m'37(1 + k)2 EQm'3(l + k) +km'2(2 + k - k2) +
m'(-2k3 - 32 + 1) - (1 + kﬂ + 256k™m l‘L8k” 5 4 uk3m'“(k P 7Y+
K2m'3(-9%k2 + 10k + 35) + km'2(-3k3 - 32k2 + 5k + 18) +

m'(-6k3 - 37kZ - bk + 3) - (3K2 + 1k + |

1 J(k -1 + 2km') - bim'

3 cos T+ &) + T -
96x33(1 + Mk(L + 1)3(m'2 - Yk + 1)3\k(m'k + Y + 1) )

{J3(l - xP 2[2k7m'7 s bn® - S5 - 1) e H e - 13) 4

2k3m'3(5k2 - 4) - 2K 2(5K2 - 7) - xm'(5K2 - 3) + 502 - 1)] +

(continued on next page)
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42(1 - ¥2)2m’ (13K°m 6 6OmS - 33t + 1263003 + 27ln? -
6km' - T) + 163(1 - kem'EEk7m'7 + 2166 + 3Pm OB - 3) -
st M2 4 1) + 6x3m3(2 - ¥2) + 6K'm? + km'(3k2 - 5) -

(362 - 1)] + 63 3[ -8k T - 16m16(x2 +7) + wOn O (k2 + 5) +
by 4 17) - 83wr3(R + 2) - w2(11K2 + 13) + b (6F 4 1) +

\/ J [k - 3(am' - 1)] s
(5K2 + 3)} L (A12)

2hnd3(1 + Mk(m™? - 1)(1 - ¥2)%(k°m'2 -1)3

For untapered wings; A = k = 1:

Cip = 10 E’u(ém' +6m' + 1) + 4a3wr(2n'® - 1) - 6a%m2(em' + 1) +
P xBA'3 :
: am'(A - 1)
- cos : ;
bam'3 + m'h'(am'2 + 6m' + 51' _A +_m3 + El'u(?m"+ -
192(m' + 1) .

b3 - 2m'2 4 om') + 8A'3m' (m' - 1)2(uw'? - 1) - 12420 3(m' - 1) +
cog-Ll I’ - A'(m' - 1)

3+A'm'3(m' - 1)2:1 ' +

192(m' - 1)2(m'2 - J_),/m'2 -1

m'*(-8m'? + b - m’6) S m"h(s + lOm‘2 3m'l+)

182 - 132 1 m' Wh(n'? - 1)3

[3;\'3(-m'LL 4303 - 302 +m') + A2nt(2m'H 4 30m'3 - 61m'2 -

smt + 23) 4 Am2(-1b + 3bn - 19m'2 + 2n'3 - 3wh) + 3m03(5 -

'm A'2 - 1) , .
m2 - w3+ om )] \f . (A13)

288_(m'2 1)2(m" - l)\]m' + 1
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M
T+ W)@ - 1)

If A' >

For tapered wings: ‘ N T
N ”k3[§k? - m'2(3k% + 1:] sl 1,
'TE 3x33(1 + M) (@m'@ - 1)3/2(1 - k2)3 m'

108k3m (1 + K2 - 2m'2R) N
3r33(1 + A (1 - ¥2)2(m'2 - 1)(k°m'® - 1)

128k5m'”[;L + w2202 + 3)] cosl ZL
30I3(1 + M) (1 - ¥2)3(m'2k2 - 1)3/2 km!

{% (1 -k u[rhk 0+ 1263mr (k +5) + kzm'Bk-lfke + 22k + 43) +
km'2(-5k3 - b8K® + 3k + 2) - m'(10K3 + 45K° + 12k + 5) -

(5k° + 1hk + 55] + 16km'I3(1 - k)3[§£hm'5 + 83m H(k + 2) +
K2m'3(-3k2 + 14k + 5) + km'2(-3k3 - 8k2 + k - 6) - m'(6k3 + TK® +
8k + 3) - (3k2 + 2k + 3i] + 32km 221 - k)3[;12k3m'” -

Mm'3(3 + k) + 3w - Tk - 6) + 3 (2R - 5k - 1) -

3(1 - ki] + 256K3m'33(1 - k)2[;2m'3(l ~x) +xm'®(2 -k - ¥°) +

m'(-2k° + k + 1) + (1 - k{] + 256k ”[;k“m'5 + US3n (7 - k) +
km3(-9k2 - 10k + 35) + km'2(3k3 - 32K2 - Sk + 18) + m'(6k3 -
37k% + bk + 3) + (3%2 - 1k +
3ii} -
9633(1 + Mk(1 - k)3(m'® - 1)(km' + 1)3k(km’ + 1) (' - 1)
| (A1L)
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For unswept leading edges or for unswept trailing edges; k = o or O:

-1 2 )
e B(l-x)3(1+>~{3”[u_w(5)”'3)*6‘”1-%)(% TR
b) + 2(-2 + 8L - 6) "
)+ P32 ]3@-u1-xj\m§-u(1-xj (415)
For A = O:
oadmt ] 1+ k2 - 2m?

ZP = 31‘(BA'3(1 - k2)2 (m|2 - i)(k2m|2 - l)

m'2(3k2 + l) Ll-k2 | —l l + vkhm’g(kg + 3) - )-l-ke ;:OS-l _"_'_l__
1-K)@2-132 0 W (1. @) (a2 - )32 o'
(116)
For untapered wings; A = k = 1:
C1, = 16 En'l*(zm'h - 4m'3 - 2m'@ 4 om') + 8A'3m'(m' - l)’a(m'v2 -1) -
P xA'3B
124201 3(m' - 1)2 + bAm'3(m' - 1)2 z
] 192(m' - 1)2(m'2 - 1)[pr2 _ 1

mt)'l'( 3m|)+ + lomle + 8) m|)4-( mr6 + )+m|}+ 8m|2) -l 1
1h(m'® - 1)3 4WB8(m'e - 1)3\ffn -1 m
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TABLE I.- CGENERALIZED FORMULAS FGR ¢ DISTRIBUTIONS
Bocot A1 3 Iz ) > 4B. cot A ’
[ cot A R IB cot Ap £ 1; BA 2 TF N+ B ot &) (See fig. 1.)
v ) . Sy
\\
“p
~
.
N
A Y
N — T,
N
2 3
I, N
,’ b //\\
’ ‘ \\
/, ,, 5 \\
. ) ,” ’, \\
----Mach line VY P
. x v
X
Region
(see Formula for @ contributed by o
sketch)
1 Vu.fmx -¥)
Bem? - 1
2 —Jo __ lmx - y) cOs'lx_.'_?.Qﬂ_+(mx+y) 005'15_(13_2“1).
n:VBEmE-l B(mx - y) Blmx +y
Va .1 ™g + ¥o(2Bm + 1)
3 —=————|(mxs - ya) co8™" ———u—" 4 O\|my, (x, + By,)(Em + 1
y f 2m2 1 mMXg - Ya a\Xy a )

2
Yo (s, - 7,) |E°S-l mre + ya(2Bm +1) ) mxa + BPnlyg + h(B2m? -

1] .

— | (mx, + + 2h) cos
«\B2a? - 1[ e’ e :

mx, + ¥y, + 2h

B — mXg - Vg Bu{mxy - ¥a)
. ' )
B2m? h(5%n? »
(mx, +2h + y,) cos™t Te ¥ Vs + B( + 1) + Q\I-mya(xa + By, )(Bm + 1)
Bu(mx, + yg + 2h)
5 L L et yain 1) 4B o ety + Bav, + o) (B - lil
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G
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. s
. g + ¥ + Bxm w0 2 l_m\mﬁ - )
e+ (1 - )+ Bam U gugmy + (T - gmR) A + (T - gHE) TS + (T + o) SmE + AHAT + x| d
(T - maf)gu - (PAug - "x)wmg + °Ang - NW%5WW&%
- Y (Bhg LT £ )
ﬁ: + ug)( + X) T T T ——— T Sy S -
. (uz_+ %& + ®xm)mg _soo 2 L1
(T + gmau + whmawm + ®xm © mﬂwa\,r‘.gmm + (T - msummvw.h + wuam_ﬂuh + 42 + Bxm)’ .
+ (%% - xmyug soo - B8 - P 809 g - m\mﬁn _ Nammv/m
(T - guom)a + Agmyg + S T (x + vme) + B T [(1 - gmom)uz - (T~ ege)"4 - ®xu|(° - m) T)a
8 By 8o\ € B}
*H + wE) ("4 + 7x) (T~ a0 - (1 + m) Az - PR+ (1 + mn)oem
: €
- % son 2 Jagtt - g%
(T + m2)h + Bxm T [T1 - gmd)w@ + (T - gWpHe)™ + - (34 - wnsv_ €
B . ((& + xmyg e ) (£ - xm)g . z 7 - mammv/ (T - gmay>
@ H?mm Tx -7 _Mmsmmm - - N.W_E + xw) * fug - x .H-mS m..a - JuER)A + xa.uﬁ - nsm T \ q e
’ (t- g)2
&Hﬂ - AAE + EMT» - E*mﬂ T
( wo3eye
d £q pangiaquod & I0J BTULIOfL - ‘9a38)
uotday

o H\v SUTT YO r---

A
PIPUTOUO) - SNOLLNATHLSIA # ¥OJ SYINWNOL CEZITVHENED -°I TTHVI
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BL - Bxm

T + wW3)BL +

(T + w)( %a + ®x)%An-fuge - m

P : . :

m? - wamm;u

)
] - ‘-80° ma - U - PAmg - mxm:f:l

B _ Bym
[(1 + maz)®s + ®xm]-

T- Nsmm\é-
‘ﬁc:

S02
e

u

(uz + Shmg + Pxm) (1 - )%~ uge
T- N\
A 4z + °£ + ®xw 09 I c
T ( + %% et T EE ) wes (w1 - P T Y
- S02 + + Bxm
qe + (mgz - T)®4 - Bam T [(r+ gy + Phomes d 'a
d 2 uotdey dA V 2 uoigey
+ d. % .
o (0w (3v) x \909) + (a0v) "
. aAvmo v . 1- mﬂmm>
* v o €
w 1- ) Ax 1- x
E sos (agmg - 1) - AL DW s (g ol EE R - v, (e | I EE]
AL - T AJEE + T l_ X udy Gmsmm -1 Agmog + T T ot
mmmﬁ - SHLA)A T - Fuah
(T - AgmeE) X man woy T
(uoqens
d £q peanqixguod dgy g0z ernmrog o £q peanqraguod djy J03 BTNmMIO] 298)
uotday

Bg

(vaoo g + T)(Y + T) _

_W.H ‘313 99%)
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QUTT YOG ~---
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v 505 &% 2 Ve ¢T3 |8y 200 g :u.<e8&
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|

,.A<.poo g+ T)(x + 1)
V300 an < v

1 2|9y q00 g| {73 v 300 g -BUIM-JTEY 230WRI
3098J93UT j0u s90p dF3} JISYJITS WOJII SUTT YOBW 2BUF OSTE PU®B.83ps
FutTTBI} J0 dI3 JI9UITS 3095I21UT ABW UOT]I9S JISQUSD JO 98ps JuTpPBOT

WOIJ SUTT YOBW 3BU3Y 910N

*sdtq osTmmeOJIls ¢538pe BUTTIBIL PuUB

ButpeeT otuosxadng -o7qeoTTdde I8 SOATYBATJISP QNU pue dﬂo puB

suotinqragstp - v PUB ¢ TTR UOTYM 03 SUOTIBMITIUOD FuTM -'T SIMITL

+dly  oa7pE80U PUB V. SATITSO4 (a)

z///||||||||||||¢umwumvmeong»w“rumv

ChA

v DUB V SAT3TSOJ (B)
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(T-v3o @) +1) _ (V3o g+ (X 1) .
| v3oo g 0 < "V 300 gy >vg ‘T Z V300 g

*A3TTTQTSISASI JO WRJIOSY]L JO 3sn £q Popuslxs aq Lvum mNo pus

dqo J0J sSSnTBA YOTUYM O3 SUOTIBINITIUOD BUTM TBUOTIFTPDY -°c 9aMITJ

*38ps BUTTTBIF SUTM £3098I97UT
UOT3098 JI9qU33 JO a3ps JulpeaT
WOIF SUTT YOIBNW 3BYF UOTFTPUOD
uo JUTM-JT8Y 210WdDI 81098 . :
-I123ut d13 JI9Y3 TS WOAI SUTT YIBRN (q) .ma<. PUB vy S3AT3BISYN (B)
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(a) Notation and body axes'used in analysis.

Body axes

(b) Stability axes. (Corresponding body axes dashed for comparison. ) Ca

Figure 3.- System of aXes and associasted data.
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Mach lines

Figure 4.- Regions of similar disturbances for velocity potential
and pressure distributions.
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72~
BA
| | b R
6.8' | 5
i 6 — —_—
\ P S—
64‘ /2 __:__
6 —_.
H 20 — —
60}
‘.
56k
Lo i
5.0
i
\‘\\\\
45"“'\."\‘
N
ok
4:4\ \\‘\‘\ \E‘\'\ i . - | -
\\\\:‘:
"N
NS TN = S (N A N U )
S N e e e o
36; E 3 Z 5 % ;
Bcot N\
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(a) Taper ratio X\ = O. ’
igure T7.- Variation of BCLCJL with sweepback-angle parameter for .

various values of aspect-ratio parameter and taper ratio.
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(b) Taper ratio A = 0.25.

Figure 7.- Continued.
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(c) Taper ratio X = 0.50.

Figure T.- Continued.
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(d) Taper ratio X\ = 0.75.

Figure T7.- Continued.
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(e) Taper ratio A = 1.0.

Figure T7.- Concluded. *
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| (a) Taper ratio A = O.
- Figure 8.- Variation of BC, with sweepback-angle parameter for
P

various values of aspect-ratio parameter and taper ratio.
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(b) Taper ratio A = 0.25.

© Figure 8.- Continued. -
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(c) Taper ratio

3

Figure

4 5
Bc ot N\

= 0.50.

8.~ Continued.
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. (d) Taper ratio A = 0.75.

Figure 8.- Continued.
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' Figure 8.- Concluded.
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